Using a novel method for random noise reduction of seismic records

Authors

  • Majid Bagheri Assistant Professor, Institute of Geophysics, University of Tehran, Tehran, Iran
Abstract:

Random or incoherent noise is an important type of seismic noise, which can seriously affect the quality of the data. Therefore, decreasing the level of this category of noises is necessary for increasing the signal-to-noise ratio (SNR) of seismic records. Random noises and other events overlap each other in time domain, which makes it difficult to attenuate them from seismic records. In this research, a new technique is produced, by joining FX deconvolution (FXD) and a special kind of median filter in order to suppress random noise from seismic records. The technique is operated in some stages; firstly, FXD is tried to eliminate the Gaussian noise, and the median filter is fixed to diminish the spike-like noise. The synthetic dataset and field data examples (from an oil field in the southwest of Iran) have been employed to demonstrate that random noise reduction can be attained, while the signal content will not be destroyed considerably. The final results indicate the authority of the proposed strategy in suppressing random noises, whereas signal information is almost protected during the filtering.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

full text

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

full text

a novel noise reduction method based on subspace division

this article presents a new subspace-based technique for reducing the noise ofsignals in time-series. in the proposed approach, the signal is initially representedas a data matrix. then using singular value decomposition (svd), noisy datamatrix is divided into signal subspace and noise subspace. in this subspace division,each derivative of the singular values with respect to rank order is used ...

full text

Fuzzy random impulse noise reduction method

A new two-step fuzzy filter that adopts a fuzzy logic approach for the enhancement of images corrupted with impulse noise is presented in this paper. The filtering method (entitled as Fuzzy Random Impulse Noise Reduction method (FRINR)) consists of a fuzzy detection mechanism and a fuzzy filtering method to remove (random-valued) impulse noise from corrupted images. Based on the criteria of pea...

full text

Application of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation

Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...

full text

A Novel Noise Reduction Method for Image and Video Denoising

An image and video are very good information carriers but they are corrupted and deviate from their original value received after transmission. The major factor that reduces the quality of the image and video is Noise. It hides the important details and changes value of pixels at key locations causing blurring and various other deformities. We have to remove noises from the images and videos wi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 3

pages  65- 72

publication date 2018-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023